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Abstract "
We present a formal system to reason about implicit belief. Implicit belief captures

the (possibly probabilistic) information available to agents in probabilistic distributed I'

systems. Our system also deals with non-determinism where all the non-deterministic Q
choices are made at the beginning of the computation. We demonstrate the natural- ,-LJ
ness of our approach by offering new analyses and solutions to some classical distributed
computing problems, namely the coordinated attack and authenticated Byzantine agree-
ment.

1 Introduction

1.1 Uncertainty in Distributed Systems

Uncertainty is inherent in distributed systems and is what distinguishes their study from
the study of "parallel computation". Uncertainty arises from many factors:

1. Lack of knowledge of system configuration.

2. Lack of knowledge of the protocol being run by other processors.

3. Lack of knowledge of inputs received at other sites.

4. Unreliability of hardware components of the processors or communication system.

5. Variability of processor step times.

6. Variability of message delivery times.

7. Unpredictability of random coin tosses.

8. Unpredictability of future external inputs.

9. Lack of compute power to extract knowledge from the available information.

The first three items concern uncertainties of an individual agent (process) in the system;
these uncertainties are of facts that are known to an external agent with a global view of
the entire system. Items 4-8 concern uncertainty about the system as a whole, i.e., what
course the run of the system will take in the future. From the agent's local point of view,
all of these items have the potential of introducing error into a computation, and all force

This work was supported in part by the National Science Foundation under grant DCR-8405478 and by
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the agent to view its own knowledge with a degree of skepticism. In this work, we introduce
a formal system that enables one to reason about the knowledge of an agent in a system
that has elements of 1-8. Item 9 is of a slightly different nature as it concerns issues of
computational complexity. It is a non-issue in most distributed systems (although it is
a major issue in cryptographic systems [HMT87,FZ87,GMR85,TW87]). In the interest of
simplicity we do not treat it in this paper, although we believe the formal system of reasoning
about knowledge, probability, and time presented here can be extended to encompass the
notions of relative knowledge and belief presented in [FZ87].

Generally speaking, uncertainty may be considered to be either probabilistic or non-
deterministic in nature. If we have some a priori knowledge that uncertainty is determined
by a random process independent of the operation of the system, then we can model it as
a random variable, i.e., probabilistic. Else, we are forced to consider worst-case scenarios,
namely, we view the cause of uncertainty as if it were controlled by an "adversary" who
wants to cause the system to behave as "badly" as possible, i.e., non-deterministic.

1.2 Formal Treatment of Uncertainty

The goal of this paper is to define a formal system adequate to describe the kind of "knowl-
edge" possessed by agents in distributed systems that involve elements of uncertainty. Our
approach is similar to that of [FH87,11MT87], but it differs in two major respects:

1. Our system treats uncertainty due to lack of information and uncertainty due to the
unpredictability of future random events in a uniform way. Thus, we can give an exact

characterization of the "probabilistic knowledge" possessed by an agent at the end of
a protocol as well as at the beginning.

2. We handle non-determinism explicitly in our model, rather than trying to allow for it
implicitly by making certain sets unmeasurable. The resulting system appears to be
more expressive as well as being simpler and more natural.

Consider a simple 2-party protocol between agents p and q in which p flips a private
unbiased coin and nothing further happens. q cannot see the outcome of the coin toss. Thus,

there are only three global states in the system: the initial state So before the coin has been
flipped, the state Sh in which the coin has landed "heads", and the state st in which the
coin has landed "tails". Because the coin is unbiased, the probabilities of reaching sh from
so and of reaching st from So are both 1/2.

In state so, q knows that the coin will land heads with probability 1/2. Halpern, Moses,
and Tuttle (cf. [HMT87]) would express this fact by the formula

K1 /2 heads

which says that q knows that with probability at least 1/2, the statement "at the next state
(after the coin has been flipped), the coin will be heads" holds, where the probability is
taken over the possible future extensions of the run. In this example, there are two equally
likely runs, one ending in sh and the other in st. Since heads is true at the end of the first
run and false at the end of the second, q reasons in so that heads will hold at the next step
1/2 of the time.

2
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After the coin has been flipped, q still does not know the outcome (since p has not told
him). From q's perspective, it is still just as likely that the coin landed "heads" as it is that
it landed "tails". Intuitively, the statement

K 12 heads
49

should now hold and reflect this uncertainty in q's knowledge. However, the [HMT87]
logic does not permit this uncertainty to be expressed, for the only uncertainty it can
accommodate is that resulting from future randomness. After the coin has been flipped,
the outcome is determined and there is no more future uncertainty. The global state is now
either Sh or st. In Sh, heads holds with probability 1, and in st it holds with probability
0, but in neither state does it hold with probability 1/2. Since q does not know which is
the true state, the formula K'heads only holds for a equal to the minimum of those two
probabilities, which is 0.

In our system, we can formalize the fact that at the end of this protocol q considers the
two states Sh and s to be equally likely and therefore has confidence 1/2 that the coin has
landed heads. Confidence, the way we use it, is well defined; its intuitive meaning is that,
if q bets even money on heads and the game is repeated many times, then its expected loss
is zero. To avoid confusion with true knowledge, we call our notion of knowledge with a
possibility of error implicit belief, and we denote it with the symbol B instead of K.

In the above example, the formula

B1/2 heads

holds at both sh and st. It should be read, "q believes with confidence 1/2 that the coin
has landed heads". It might seem that in st the formula should not hold. However, q has
no clue whether the real state is st or Sh as it cannot distinguish one from the other. The
only additional information q obtained about the outcome of the coin flip is that it had
been determined. Therefore, q reasons that 1/2 of the times in which it finds itself in this
situation (of the coin having been flipped but not knowing the outcome), the true state is
s, and the other half of the times it is st. Since heads is true in sh, it is quite reasonable
for q to believe with confidence 1/2 that the coin is "heads".

More generally, i has only partial information about the true global state s of the system,
so i must consider any state s' possible for which its local view is the same as for s. Let [s],
be the set of all such states. Even though i cannot distingiush those states, it does have
some a priori knowledge about the likelihood of being in each of those states (assuming
for the time being that we are considering a purely probabilistic system, i.e., with no non-
deterministism). Namely, since the probability distribution on the runs of the system is
common knowledge to all agents, i can determine for each state S' E (si the probability
of the system being in s', given that the system is in some state of [s]i and can therefore
determine the probability a.0 of being in a state in which p holds. If a < a,, we say that
agent i believes V with confidence at least a in state s, which we write as

s p sB'p.

When we add temporal operators, we obtain formulas such as +heads mentioned above
which are neither true nor false at a given state but rather have a certain probability of

3
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being true there. Definining belief with confidence a of such formulas requires a slight %

generalization of the above definition. Details are presented in Section 3 below.

Non-determinism presents a special problem in reasoning about probabilistic protocols,
for how can one talk about the probability of a statement being true when that probability
is affected by non-deterministics choices? The answer is that one can't, but once all the
non-deterministic choices are fixed, the resulting system is a pure probabilistic one and the
probability of a formula being true is well defined. We consider only initial non-determinism,
that is, the non-deterministic choices must be made before the protocol is run and before
the outcomes of any of the coin tosses are known. This allows us to model uncertainty in
network parameters, network configuration, initial inputs, and protocols run by the other
agents, but it does not allow us to handle external inputs that arrive during the execution of
the protocol and which may depend (in unknown ways) on the execution history up to that
point. We leave the extension of our formalism to full non-determinism for future work.

Fagin and Halpern [FH87] define a formal logic for reasoning about knowledge and
probability which is based on Kripke structures that have been extended to include a "sub-
jective" probability space for each agent i at each global state s. Subjective probability
generalizes the indistinguishability relationship of classical knowledge logic and tells for
each set of states S the agent's belief that the true state belongs to S when in fact the true
state is s. Because of non-determinism, it does not make sense to assign probabilities to
all possible sets of states. Fagin and Halpern note that it is okay to leave such problematic
sets unmeasurable since a probability space does not require that all sets be measurable.
For example, in game G, of the next section, the probability of ending up in the set {S , S3)

is either 0.5 or 0.8, depending on the initial non-deterministic choice, so there is no single
"right" measure to assign to it.

The [FH87] model allows additional generality that might be used in trying to capture
the non-determinism more exactly. For example, it permits an agent to have different
subjective probability spaces in in different global states. While this additional generality
may make the logic more expressive, we also find it very unnatural that an agent's subjective
probabilities should depend on information not available to it.

The main contributions of this paper are the following:

1. We present a formal system to reason about "knowledge" in probabilistic systems,
where knowledge is subject to a probability of error. Our system treats uncertainty
due to lack of information and uncertainty due to unpredictability of probabilistic
events uniformly. This allows one to make pro' abilistic statements about a random
event after its occurrence and before information about its outcome has been obtained.

2. The degree of confidence expressed by our notion of implicit belief corresponds exactly
to the worst-case conditional probability of a fact holding, given only the information
in the local view of the agent. Thus, we have captured all of the probabilistic knowl-
edge available to the agent in the worst case, that is, all that the agent can count on
in the face of adversity.

3. Our system sheds light on some classical problems of distributed computing. Namely,
by requiring only high confidence rather than certainty in the outcome of a protocol,
we can obtain easy solutions to a large variety of problems, some of which are are
otherwise provenly insoluble. We demonstrate our approach on the the Coordinated

4
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. .coin chosen: C... . C2

0.5 0.5 0.8 0.2

coin falls: 81 Aheads S2 tails S3 Aheads 84 tails

Figure 1: The system for game G1.

attack problem. We also show that implementations of the simple authenticated
Byzantine agreement protocol of [DS83] using digital signatures do not attain either
common knowledge or certain agreement. All they attain is agreement with a high
degree of confidence.

2 The Computational Model

Throughout the paper we frequently refer to two slightly more involved "coin-flipping"
examples G1 and G 2, which are illustrated in Figures 1 and 2. A minor variation of G1 is
extensively discussed in [FH87].

GI: This game is played by two agents, p and q. p holds two seemingly identical coins, c,
which is fair and c2 which has a 0.8 bias towards "heads". p chooses non-determi-
nistically one of the coins and flips it. The coin falls either heads or tails.

G2 : This game is G, with an additional step: After p chooses a coin and flips it, it flips
some coin c3 that has a 0.8 bias to "heads". If c3 falls heads, p tells q the result of the
first coin flip. If c3 falls tails, p lies to q about the result of the first coin flip.

We model a terminating synchronous probabilistic distributed system by a set of finite
trees, each of which corresponds to some nondeterministic choice that could be made in the
system, i.e., we assume that all the nondetreministic choices are made at the beginning. For
example, in G, there are two possible trees, T, which is rooted at cl, and T2 which is rooted
at C2 . Each node in each of the trees is labelled by some distinct global state, e.g., cl, si,
$4, etc. An internal tree node s which has k outgoing edges leading to s1,. . . ,sk, labelled
by 01,..... 8L_ respectively, corresponds to a probabilistic action that can lead from s to si
with probabilisty fli, for every i = 1,...,k. This of course implies that E= 3 = 1. We
use pr(s,s') to denote the probability of reaching s' from s in one step, i.e., pr(s, s') is the
label of the edge leading from s to s' if s' is an immediate successor of s in the tree, and
pr(8,s') = 0 otherwise.

For every node s, we denote by tree(s) the tree that s is in. We associate with s a
probability pr(s), which is the probability of reaching s from the root of tree(s), i.e., pr(s)
is the product of the labels of edges on the path leading from the root of tree(s) to s. For
example, in G 1, pr(cl) = pr(c2 ) = 1, pr(sl) = pr(s32 ) = .5, pr(s3) = .8 and pr(s4 ) = .2.

5



coin chosen: C ....... 0 --- C2

0.5 0.5 0.8 0.2

coin falls: Si heads 32 tails S3 heads 54 tails

0. o.0 . \° 2o5o 
.

0.8 0.2 0.8 0.2 0.8 0.2 0.8 0.2
C3 falls: beAdstis hastils heads A tails heads tails

ti t2 13 t4  ts t t7  ta

p says: 'heads' 'tails' 'tails' 'heads' 'heads' 'tails' 'tails' 'heads'

Figure 2: The system for game G 2.

Let S be an independent subset of states (i.e., S contains no two states that are on
the same path). We define the probability of a node s relative to the set S, denoted by
pr(s I S), as the conditional probability of the real state being s, given that the real state
is in S n tree(s). Formally,

pr(s I S) = pr(s) pr(t)).
tESntree(s)

Note that by this definition, pr(s I S) = pr(s I S n tree(s)), thus, the probability is taken
only over those states of S that are in the same tree as s.

For example, consider Figure 2. Denote the left tree by T1 and the right tree by 7'2. -
Then pr(ti) = 0.4, pr(t4 ) = 0.1, pr(t6 ) = 0.16. Let S = {t 1 ,t 4 ,t 6 ). Then

pr(t, I S) = pr(tI S n TI)

= pr(t I {tl,t4}) = 0.4/(0.4 + 0.1) = 0.8.

Similarly, pr(t4 I S) = 0.2 and pr(t6 I S) = 1.

Let S denote the set of all possible global states. We assume a set D of basic facts, and
an evaluation function a that maps every state s E S and every fact W E 'Ib to a real number
o,(W) E [0, 1]. The number a1 (V) denotes the degree of confidence which we associate with
the truth of V in s. Returning to GI, let t = {C1,C2,heads, tails} where C1 (resp. C2) VA

stands for "p chose cl (resp. c2)", and heads (resp. tails) stands for "the coin fell 'heads'
(resp. 'tails')". Then, we define:

* a1 (C1) = 1 and a,(C2) = 0 for every s E T1.

* a,(C1) = 0 and a.(C2) = 1 for every a E T2 .

* 0',(heads) = o1 (tails) = ac,(heads) = ac,(tails) = 0.

Sa.,(heads) = a.,(heads) = a5,(tails) = a..(tails) = 1.

6.
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a a,, (tails) = &-I (tails) = a. 2 (heads) = a.(heads) = 0.

We extend -t by closing it under boolean operations (-,, V, and A) and the temporal
operators 0 (next time) and (eventually). We extend the degree of confidence function
ccusing the following rules:'

a, OP V 0) =maxio-(P), a-00t)

a.(Wo A 0') =max{ 1 - (1 - af))-(1 - c,(Ob)), 0}

-max fa. (W) + a.(~) 1, 0}

a8,( O = pr(s, s'). cka,, N

=maxfa.(wo), ~ rss)..()
s'ES

For example, in G1, P.

ac1(c0heads) =0 o~tails) =0.5, a,,(Qheads) =0.8, a,,( 40tails) =0.2,

and

a, (.(heads V tails)) = .5 -a.,(heads V tails) + 0.5 -a,(heads V tails)

= 0.5 max{1,O + 0.5. rax{0, 1 = 1.

Let S be some subset of S. We extend a to capture the degree of confidence of formulae
(P E -t in the set S, denoted by as(V'). Intuitively, as( o) is our degree of confidence that V 5

is true given that we know the true state is in S. We formally define it by: %.

cr(p=min E c.(,) -pr(s I S).

The summation expresses the degree of confidence that V holds in 5, given that the true
state is in tree T. Because the tree is chosen non-deterministically, we minimize over the
possible trees T.

For example, consider G2 where crt(heads) = 1 and at(tails) = 0Ofor every t E f{ti,t 2 , t5 , t6 },
and at(heads) =0 and at(tails) = 1 for every t E f{1 3 , 4 , t7 , t8 }. Let S fl {i, 4 , t 6 }, then:

as(heads) = min a o(heads) -pr(s I S)
TE{T: .72) En

=min{ 2: a.(heads).- pr(s I{1h, t4}), E a.(heads) -pr(s I{ft6))}

=minjoit, (heads) .0.8 + at4 (heads) -0.2, at, (heads).- 1}
=min{1 -0.8 + 0 0.2, 1 -1} = min{0.8, 1} = 0.8.

Intuitively, this means that if all one knows is that the system is in one of S's states, then 1

we can bet, with 80% probability of success, that heads holds.%

'When we say that 'we extend and 4' by closing it under some operators', we really mean that construct0
a new 0' which we close under the new as well as the old operators, and then term it 4'. We also implicitly
assume that all the previous semantic definitions hold for the new 4'.

7
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3 Belief

Consider the system of G1. If the coins look identical, then agent p, who chooses the coin
and flips it, cannot distinguish between the states in each of the pairs {cl, c2 }, {s,, 83}, and
fs$2,s4). It can however distinguish between elements of different pairs. On the other hand,
q can only distinguish between the sets {ci,c 2 } and {S,... ,s 4 } but cannot distinguish
between pairs of elements in the same set.

We assume that for each agent i E A the states of the system are partitioned by some
equivalence relation -i, where s ,.i s' if agent i cannot distinguish between s and s'. For
every state s and agent i, we denote by [s]i the set of states that are indistinguishable from
s by i, so [s]i = {t s -j t}.

For example, in G2, -p is the equivalence relation induced by the partition {{c1,c 2 },
{si, s 3 },{s 2 ,s 4 },{tl,t 5 },{t 2 ,t 6 },{t 3 ,t7},{t 4 ,ts}}, and ,- is the equivalence relation in- e_
duced by {{C,c 2}, {Si,... s 4},{tl,t 4 ,t 5 ,ts},{t 2 ,t 3 ,t 6 ,t}}..

Consider now agent q when the system G2 is in t2 , i.e., when cl was chosen, flipped and
fell heads, and p told q 'tails'. q cannot tell whether the system is in t2 , t3 , t6 , or t7 . It

however knows that if cl was chosen (i.e., the 'real' state is in TI), then in 0.8 of the cases
tails is true, and if c2 was chosen, then in 0.5 of the cases tails is true. Similarly, if cl was
chosen then in 0.2 of the cases heads is true, and if c2 was chosen then in 0.5 of the cases
heads is true. Therefore, q believes that no matter which coin is chosen, tails is true in at
least 0.5 of the cases, and heads is true in at least 0.2 of the cases.

Let B3 denote that "q believes, with degree of confidence at least /, that p holds".
Then, in t 2 ,

B°'tails and B0 .2 heads.

Formally, we say that for every agent i E A, probability E E [0, 1], and formula P E ),.
B1 holds in a state s E S iff V is true in [s]i with degree of confidence at least /, i.e.,

13k BV iff a15,(j) # /

We next extend the set 4 to by adding the belief operators B'3 for every i E A and
0 E [0, 1] to the set of operators in Section 2. We extend a to by adding the following case
to the definition of Section 2:

0 if s, •1
a.(B )= { 0 otherwise

If for some s E S, i E A, and E 4', s = B!p, then we say that in s agent : knows o,
and abbreviate s P= Bp to s = KV. Note that s K,V if a[(sp) = 1, i.e., if v is true
with certainty in all the states that are indistinguishable to i from s, so that our notion of
knowledge coincides with the "classical" definitions (see, e.g., [HM84,FI86]).

Let us return to G1. At the beginning, the system is in either cl or c2 . Both p and q
believe that the coin will fall heads with probability at least 0.5, and tails with probabililty
at least 0.2. Indeed, we check that for every i E fp,q} and c E {c,c 2 b},

G(c],( heads) = mi o0( 4heads) -pr(s I [c],)
TE M ,T2 ) aE cJ..T

8 ep



= min{ac,( Oheads) .pr(ci {c)),ac 2 ( heads) pr(c2 I {c 2})} I
= min{0.5.1,0.8- 1) = 0,5

and similarly that old,(4tails) = 0.2. Hence, c B,-'( heads) and c = B9.2(Otails).

However, after the coin has been flipped (i.e., in s,... ,s 4 ), p knows the result of the U
coin flip while q has gained no additional information about the result of the coin flip.
Indeed, we can see that

a[.,],(heads) = at,, 3}(heads) = 1 and o[,](tails) = a{,,,,)(tails) = 0, -V"

whereas

a[j,,q(heads) = ... ,,}(heads) = 0.5 and oa[,,](tails) = , .(tails) = 0.2.

So s, k Kpheads, whereas s, B~heads is only true for j3 < 0.5. This corresponds to our
intuition that p knows the outcome but q has learned nothing of it.

4 Coordinated Attack

Consider the Coordinated Attack problem as stated in [11M84]:.,' "1

Two divisions of army are camped on two hilltops overlooking a common valley.
In the valley awaits the enemy. It is clear that if both divisions attack the enemy X"
simultaneously they will win the battle, whereas if only one division attacks it..
will be defeated. The divisions do not initially have plans for launching an
attack on the enemy, and the commanding general of the first division wishes
to coordinate a simultaneous attack (at some time the next day) ... The
generals can only communicate by means of a messenger. Normally, it takes the
messenger one hour to get from one encampment to the other. However, it is
possible that he will get lost in the dark, or, worse yet, captured by the enemy.
... How long will it take to coordinate an attack?

A correct solution (protocol) should guarantee:

Safety: If either party attacks, then they both attack at the same time.

It is shown in [HM841, that no correct solution to the problem will ever result in a coordi-
nated attack. The results of [HM84] apply even if we assume some fixed probability 0 of
the messenger successfully delivering a message within one hour.2

Suppose however that we are given such a probability 0i, and we look for solutions
that satisfy some weaker safety requirement. For example, consider the y-weak coordinated
attack problem in which we require:

y-Weak Safety: The probability that both parties attack at the same time, given that

one party attacks, is at least y.
2This observation is due to John Geanakoplos.

9



If -y < /6 then the problem has a trivial solution: The first general (say p) sends a
message to the other general (say q) with the attack time t, and then attacks at this time. e
If q receives the message, he also attacks at the designated time. Thus, p always attacks
at time t, and since q receives p's message with probability /0, q attacks at time t with
probability /. Since /8 -y, -f-weak safety is satisfied.

There are also solutions when -y > P. For example, if k is such that (1 - 0)k <(1 - ),
then p can send k messengers to q carrying identical messages, and q attacks if it receives
one or more messages. This occurs with probability at least 1 - (1 - 3)k > t."

Thus, we obtain:

Theorem 1 The "1-weak coordinated attack problem has a correct solution for any / > 0,
where P is the probability of the messenger successfully delivering the message, providing at
least Pog(1 - -1)/log(1 - P)1 messengers are available.

The crucial point in the [HM84] proof that the problem cannot be solved is that the
parties need to obtain common knowledge about the attack time. (See the discussion there
about common knowledge.) The system we set forth is much weaker, as it allows p to attack
at time t when it only believes the other party will attack but is not certain.

Theorem 2 In any protocol solving the 71-weak coordinated attack problem and any global
state s, if p attacks in s then

s B~q attacks,

and if q attacks in s then
s B'p attacks. %

We can also prove a kind of converse to Theorem 2:

Theorem 3 Consider any protocol C such that for some E e [0, 1] and for every global
state s, if p attacks in s then

s Bq attacks,

and if q attacks in s then
s B~p attacks.

Then C solves the -/'-weak coordinated attack problem for -' = 1/(2 - -Y). """

For comparison, the [HM84] proof relates to systems that guarantee that p attacks in
state s only when

s Kpq attacks.

5 Authenticated Byzantine Agreement

Authenticated Byzantine Agreement (ABA) is Byzantine agreement under the assumption
of authentication. See [DS83] for a thorough discussion on the subject. For example, it is
said there that:

i
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"..., we assume a protocol that will prevent any processor from introducing
a new value or message into the information exchange and claiming to have
received it from another ... "

Indeed, all the Byzantine agreement protocols proposed there make heavy use of some ideal
authentication scheme that guarantees the above.

For example, consider the simple protocol P for achieving ABA in [DS83]:

1. Initially, every processor p has a set of values Cp = 0, and some default value Vd.

2. At step 1, the sender sends a signed message with its value to all the processors.

3. At every step k = 2,...,t + 1, every processor p that received a properly signed
message m in the previous step containing a value v V Cp, adds v to Cp,, places his
signature on m to obtain a new message m', and sends m' to all processors. A message
received in step r is properly signed if it is signed by r distinct processors, the first of
which is the sender and the last of which is the process from which the message was
received.

4. At the end of step t + 1, every processor p for which Cp = {v} for some v chooses that
v, and every other processor p chooses the default value Vd.

Dolev and Strong [DS83) show that the above protocol indeed guarantees Byzantine
agreement if the number of faulty processors is at most t. However, suppose that the
signature scheme is not totally secure, so that under certain circumstances a faulty processor
can forge the signature of a reliable one. Consider the case, for example, that the sender
is nonfaulty and sent v 9 vd in step 1. At step t + 1, a faulty processor might send
to some of the correct processors a message that contains another value v' together with
the forged signature of the sender and (valid) signatures of the t faulty processors. Those
correct processors receiving this bogus message will choose vd, whereas the remaining correct
processors will choose v 6 Vd, thereby violating Byzantine agreement.

If the sender is faulty, then it is sufficient for the faulty processors to forge a signature
of any one correct processor. The argument proceeds along the same lines.

The scenarios described above might not be very likely; however, they have a posi-
tive probability of occurring when authentication is implemented through cryptographic
techniques. For example, a signature might be forged simply through random coin flips;
thus, forgery is always possible with probability at least 2 -N, where N bounds the mes-
sage length. Thus, a real-life implementation of this protocol does not achieve Byzantine
agreement since agreement sometimes fails to be reached.

What then is achieved? We define

-Weak Agreement: With probability at least y, all correct processors choose the same

value.

y-Weak Liveness: If the sender is non-faulty, then with probability at least Y, all correct
processors choose the sender's value.

A protocol achieves "y-weak Byzantine agreement if it satisfies y-weak agreement and Y-weak
liveness for any choice of faulty processors. We then have the following theorem.

"'



Theorem 4 If the probability of the faulty processors successfully forging the signature of
a reliable processor is at most 1 - 7, then protocol P achieves 7-weak Byzantine agreement.

Dwork and Moses [DM86] introduce the notion of Simultaneous Byzantine Agreement _
(SBA), which is Byzantine agreement in which all processors choose values at the same
step. They show that any protocol that achieves SBA must satisfy

p chooses v ==* Kp (every correct q chooses v)

for every correct processor p. Protocol P, when run in an idealized environment with perfect
authentication, achieves SBA, for all processors decide at the same step (cf. [DM86]).

A 7-weak Byzantine agreement protocol does not satisfy SBA since it does not even
achieve agreement. We define a corresponding weak notion of SBA, termed 7-SBA, by "
replacing the condition of 7-weak agreement with:

7y-Weak Simultaneous Agreement: With probability at least 7, all correct processors
choose the same value at the same step.

In the full paper, we prove the following:

Theorem 5 Every 7-SBA protocol satisfies

p decides v = B(every correct q decides v)

for every correct processor p.

6 Further Work

Real-world systems must make decisions based on uncertain information. We have shown
how to model uncertainty in the framework of knowledge logics, and we have shown how
allowing for uncertainty in two classical problems of distributed computing radically alters .
their properties. We believe this work is important not only for the formal machinery it
provides but also to help clarify people's thinking in making subtle distinctions between
probabilistic and non-deterministic choices, and we expect to be influential in future dis-
tributed computing research.

We leave as an open problem the extension of our framework to eliminate the assumption
that all non-deterministic choices are made before the protocol has begun. To do so will -A-

require one to handle alternations of non-deterministic and probabilistic choices, which will V
give rise to expressions of alternating minimization and summation operators.

In order to reason about cryptographic protocols, it is necessary to introduce feasibility
into notions of knowledge and belief. Intuitively, computational complexity considerations
are like dark glasses over the eyes of an agent. Even though an agent's local view of
two states is not the same, he may not be able to make any useful distinctions between
them and thus should believe a fact with the same confidence as if the states were totally -A

indistinguishable to him. We address this issue in [FZ87 in which we express what an
accepting verifier believes at the end of an interactive proof of "knowledge" using concepts
of relative knowledge and belief developed there. We are currently working to extend those %
concepts to the temporal logic framework presented here. . .

12
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